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Abstract. We address the problem of antiferromagnetism in a two-dimensional model of doped spin-Peierls
system, at the classical and quantum levels. A Bethe-Peierls solution is derived for the classical model,
with an ordering temperature proportional to the doping concentration. The quantum model is treated in a
cluster renormalization group showing a finite randomness behavior and an antiferromagnetic susceptibility
at low temperature.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

The spin-Peierls transition at TSP ' 14 K in the inorganic
quasi one-dimensional spin-Peierls compound CuGeO3

has attracted much interest [1]. This transition is char-
acterized by the appearance of a finite dimerization in
the CuO2 chains, and the opening of a spin gap. With
CuGeO3, it became possible to experiment the effect of
doping in a spin-Peierls system. An antiferromagnetic
(AF) phase was discovered upon replacing a fraction of
the Cu ions (with S = 1/2) by magnetic ions with a dif-
ferent spin: Ni [2] (with S = 1) or Co [3] (with S = 3/2),
or non magnetic ions: Zn [4–6] or Mg [7]. Also, the Ge
sites (outside the CuO2 chains) can be substituted with
Si [8], leading to antiferromagnetism at low temperature.

Recent experiments by Manabe et al. have shown the
existence of a finite Néel temperature ' 25 mK, with a
doping concentration as low as 0.12% [9]. The doping de-
pendence of the Néel temperature obtained in these ex-
periments suggests the absence of a critical concentration
for the appearance of antiferromagnetism: at low doping
the ordering temperature scales like lnTN ∝ 1/x [9].

Early theoretical works [10–12] have focussed on the
identification of the relevant low energy degrees of free-
dom. Fukuyama, Tanimoto and Saito [11] have shown the
coexistence between antiferromagnetism and dimerization
in a doped spin-Peierls model. The degrees of freedom rel-
evant to the low energy physics are solitonic spin-1/2 ex-
citations pinned at the impurities [12]. These excitations
are the building blocks of the theory in references [13–15].
These spin-1/2 objects interact via an exchange decaying
exponentially with distance. Interchain interactions can
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be incorporated by considering the existence of a trans-
verse correlation length, approximately one tenth of the
longitudinal correlation length, as recently proposed inde-
pendently by Dobry et al. [16], and Fabrizio, Mélin and
Souletie [15]. Numerical calculations with realistic spin-
phonon couplings have provided a link between the micro-
scopic Hamiltonian and the effective model of interacting
spin-1/2 moments [10,17–20]. The approach followed in
references [13–15] and continued in the present work re-
lies on the treatment of disorder in the effective Hamilto-
nian. This allows to discuss the qualitative physics of large
scale systems at a finite temperature, while the numeri-
cal methods have so far been limited to the ground state
properties [10,16–20]. The effective Hamiltonian is un-
frustrated because of the staggered exchanges. As we
show, it is remarkable that frustration is not gener-
ated by coarse graining the model while the low energy
Hamiltonian is controlled by a finite randomness fixed
point [21]. This may be contrasted with spin glasses,
also controlled by a finite randomness fixed point, but
in which frustration plays a relevant role. The scope
of this article is to analyze the model beyond the
percolation approximation used in reference [15], both
at the classical and quantum levels. We first show in
Section 3 that the physics of the quantum Hamiltonian
is already present in the classical Ising Hamiltonian, and
give a rigorous derivation of mean field theory via a Bethe-
Peierls treatment. The second purpose of the article is to
show that the quantum Hamiltonian has an antiferromag-
netic behavior at low temperature. The quantum model
is treated in a cluster renormalization group (RG) calcu-
lation in Sections 4 and 5.
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2 The model

We recall the model proposed in reference [13]. When im-
purities are introduced in a dimerized background (for
instance non magnetic impurities such as Zn), spin-1/2
solitonic moments are released out of the dimerized pat-
tern. These magnetic moments are pinned at the impuri-
ties due to interchain interactions [12]. This picture is in
agreement with susceptibility experiments [9,22,23], indi-
cating the release of one spin-1/2 moment per Zn impurity
at low doping. The interaction between two magnetic mo-
ments at a distance d originates from virtual excitations
of the gaped dimerized background, and decays exponen-
tially with distance, with a characteristic length set by the
correlation lengths ξx ∼ 9c along the chain direction (c-
axis) [24,25], and ξy ∼ ξx/10 in the b-axis direction. These
exchange interactions as well as the relevance of disorder
were identified in reference [13] to play a crucial role in
the establishment of antiferromagnetism. The low energy
physics of a doped spin-Peierls system is represented by
spin-1/2 solitonic magnetic moments distributed at ran-
dom with a concentration x on a square lattice, and inter-
acting via a Heisenberg Hamiltonian [15,16]

H =
∑
〈i,j〉

Ji−jSi · Sj , (1)

the exchange in equation (1) being staggered and decaying
exponentially with distance:

Ji−j = (−1)dx+dy+1∆ exp

−
√(

dx
ξx

)2

+
(
dy
ξy

)2
,

(2)

with ξx ' 9c the correlation length along the c-axis and
ξy ' 0.1× ξx the correlation length along the b-axis. Cor-
relations along the a-axis are neglected.

3 Classical Ising model

We consider a model with Ising degrees of freedom, dis-
tributed randomly and interacting via the exchange in
equation (2). The classical antiferromagnet has the same
transition temperature as the classical ferromagnet. We
consider therefore the ferromagnetic model to calculate
the ordering temperature.

3.1 One-dimensional model

A high temperature expansion leads to the exact form
of the correlations in terms of a product over the
bonds between the spins at sites 0 and L: 〈σ0σL〉 =∏

tanh (βJi,i+1). We calculated numerically the disorder
average to obtain the correlation length at a finite tem-
perature. As shown in Figure 1, the average correlation
length of the disordered model is larger than the typ-
ical correlation length ξ = −1/[x ln (tanh (βT ∗))], with
T ∗ = ∆ exp (−1/(xξ)) the exchange of the particular dis-
order realization where the magnetic moments are equally
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Fig. 1. The average correlation length of the disordered Ising
spin chain with nearest neighbor couplings is larger than the
correlation length of an ordered system with the same concen-
tration x = 0.01 above T ∗. We used ∆ = 44.7 K, ξ = 9.

spaced. We calculated in reference [14] the correlation
length of the quantum chain and found a similar result: the
enhancement of the magnetic correlations above T ∗ due
to disorder does not rely on the quantum nature of the
coupling Hamiltonian in spite of a random singlet physics
in the quantum chain, not present in the Ising chain.

3.2 Determination of the exchange distribution

We consider the exchanges to be drawn indepen-
dently in a distribution P (J) resulting from the com-
bination of randomness in the spatial distribution
of the magnetic moments and exponentially decaying in-
teractions (Eq. (2)). The relevant exchanges are set by
the spins the closest to each other. Therefore, given a
spin at site (x0, y0), we need to determine the probabil-
ity that one spin is found on the periphery of the ellipse
[(x − x0)/ξx]2 + [(y − y0)/ξy]2 = γ2, with no other spin
inside the ellipse, and therefore an exchange ∆ exp (−γ).
We consider a system of total area A containing n spins.
The probability to find no spin inside a subsystem of area
δA is P0 =

(
1− δA

A

)n ' exp (−xδA), with x = n/A the
doping concentration. Now the spacing distribution is

P (γ) = xL(γ) exp (−xδA(γ)), (3)

with L(γ) = d[A(γ)]/dγ. In the one-dimensional model,
we have δA(γ) = 2γξx, and L(γ) = 2ξx. In the two-
dimensional isotropic model with ξx = ξy = ξ, we
have δA(γ) = πγ2ξ2, and L(γ) = 2πγξ. In the quasi
one-dimensional model, δA(γ) = πγ2ξxξy, and L(γ) =
2πγξxξy. The distribution P (γ) of the isotropic and
anisotropic two-dimensional models is a Wigner distribu-
tion with a short scale “distance repulsion”. This repulsion
will be shown not to affect the ordering properties.
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3.3 Bethe-Peierls transition in the infinite coordination
limit

We now consider the Bethe-Peierls solution of the Ising
model [26]. The lattice has a tree topology, with a forward
branching ratio z− 1, and we calculate the magnetization
of the site with the highest hierarchical level (top spin), in
the presence of the other sites. We consider z−1 trees and
connect them to obtain a tree with one more generation
(see Fig. 2). The recursion of the average magnetization
of the top spin reads [27]

X=
∏z−1
i=1 (1+Yi tanh (βJi))−

∏z−1
i=1 (1−Yi tanh (βJi))∏z−1

i=1 (1+Yi tanh (βJi))+
∏z−1
i=1 (1−Yi tanh (βJi))

,

(4)

where Yi, i = 1, ..., z − 1 are the magnetizations of the
top spins with n generations, and X the magnetization
of the top spin with n + 1 generations. We first consider
the artificial situation where the ordering temperature is
large compared to the exchange: Tbp � ∆, which turns
out to be equivalent to assuming a large coordination.
Equation (4) is linearized into X =

∑z
i=1 Yi tanh (βJi),

leading to the recursion of the magnetization 〈〈X〉〉n+1 =
(z − 1)〈〈tanh (βJ)〉〉〈〈X〉〉n, with the subscript n labeling
the number of generations. This leads to the ordering tem-
perature Tbp = (z − 1)〈〈J〉〉, far above ∆ if z � 1, and
consistent with the initial assumption. We can calculate
the ordering temperature Tbp with the different distribu-
tions P (J) derived in Section 3.2. We find:

(i) with the one-dimensional model distribution: Tbp =
2(z − 1)xξ∆/(1 + 2xξ);

(ii) with the isotropic two-dimensional model distribu-
tion: Tbp ' 2(z − 1)πxξ2∆ in the dilute regime
xξ2 � 1.

(iii) with the quasi one-dimensional model distribution:
Tbp ' 2(z − 1)πxξxξy∆ in the dilute regime
xξxξy � 1.

The three limits therefore show a similar behav-
ior Tbp ∝ (z − 1)x∆, showing that the short dis-
tance Wigner repulsion in the spacing distribution
equation (3) does not affect the ordering properties. Com-
paring the Bethe-Peierls ordering temperature to the or-
dering temperature obtained from the Stoner criterion
in reference [15], we see that z − 1 should be identified
with the interchain coupling. The small-z regime, relevant
to weak interchain correlations, is now discussed in Sec-
tions 3.4 and 3.5.

3.4 Bethe-Peierls transition with a finite coordination:
(i) Percolation approximation

We now consider the physics at a finite z = 3. In this
regime, the Bethe-Peierls method takes into account the
inhomogeneities of the magnetization, not included in the
Stoner criterion mean field solution in reference [15]. We
first consider a “percolation approximation” in which we
assume the bonds J � T (J � T ) to be set to zero

... ... ...

...

Fig. 2. The tree structure used in the Bethe-Peierls calcula-
tion. The forward branching ratio is z − 1. A tree with n + 1
generations is obtained from connecting z−1 trees with n gen-
erations.

(infinity) in the effective percolation problem. With z = 3,
the Bethe-Peierls iteration equation (4) reads

X =
Y tanh (βJy) + Z tanh (βJz)
1 + Y Z tanh (βJy) tanh (βJz)

,

and is approximated into: (i) T � Jy, T � Jz :X ' Y +Z;
(ii) T � Jy, T � Jz: X ' Z; (iii) T � Jy, T � Jz :
X ' Y ; (iv) T � Jy, T � Jz: X ' 0. The recursion of the
average magnetization is therefore 〈〈X〉〉n+1 ' 2λ〈〈X〉〉n,
with the percolation parameter

λ =
∫ +∞

T

P (J)dJ. (5)

With the one-dimensional distribution, we have λ = 1 −
(T/∆)2xξx , which yields a transition at the temperature

T ∗ = ∆ exp
(
−2 ln 2
xξx

)
, (6)

exponentially small in 1/(xξx). This behavior is compati-
ble with reference [15] where we have shown the absence
of a true ordering transition in the percolation approxi-
mation of a two-dimensional anisotropic model, while the
model was shown to percolate in a finite size.

3.5 Bethe-Peierls transition with a finite coordination:
(ii) Beyond the percolation approximation

We now solve the Ising model beyond the percolation ap-
proximation. We take into account the iteration of small
exchanges to lowest order, with the following approxi-
mate iteration: (i) T � Jy, T � Jz : X ' Y + Z; (ii)
T � Jy, T � Jz: X ' βJyY + Z; (iii) T � Jy, T � Jz :
X ' Y +βJzZ; (iv) T � Jy, T � Jz : X ' βJyY +βJzZ.
The dominant contribution originates from the region (iv)
of the couplings: 〈〈X〉〉n+1 ' (2/T )µ(1 − λ)〈〈X〉〉n, with
λ in equation (5), and µ =

∫ T
0 JP (J)dJ . With the one-

dimensional distribution for P (J), we have µ ' 2xξ∆ and
therefore the same critical temperature Tbp = 4xξ∆ as in
the model with a large connectivity z (with z = 3 in this
calculation). It is remarkable that the correct treatment
of the small exchanges restores a transition temperature
∝ xξ∆. This shows the relevant role played by energy
scales smaller than the temperature.

The main unsolved question regarding the classical
model behavior is to determine whether the finite di-
mensional model has a true thermodynamic transition at



264 The European Physical Journal B

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8

P(
   

  /
 T

 )
 ∆

 

 / T  ∆ 

Gap distribution, Isotropic model

T = 1.1
T = 2.3
T = 3.3
T = 4.5
T = 5.6
T = 6.7

Fig. 3. Evolution of the gap distribution of the model with
isotropic exchanges ξx = ξy = 9, α = 2 as the temperature
is scaled down. The doping concentration is x = 0.01 and the
system has a size 200 × 200. The weight of energy scales ∼ T
increases as the temperature is decreased.

a temperature ∝ xξ∆. The Bethe-Peierls solution orders
at a temperature ∝ xξ∆ because of the strong short range
correlations. This does not necessarily mean that the finite
dimensional model also has a true thermodynamic tran-
sition at this temperature. Instead, we believe it possible
that the classical model has a cross-over to a Griffiths
physics at a temperature ∝ xξ∆ and a true thermody-
namic transition with a diverging correlation length at a
temperature T ∗, which would also be a behavior compati-
ble with a low temperature antiferromagnetic susceptibil-
ity. At the present stage, we cannot make the distinction
between these two behaviors.

4 Quantum isotropic model

We first consider the artificial situation where the correla-
tion lengths are identical in the two directions: ξx = ξy =
ξ = 9. The tendency to ordering in this isotropic model
is overestimated compared to the anisotropic model with
ξx = 9, ξy = 0.1× ξx. We are led to consider the class of
interactions

Ji−j=(−1)dx+dy+1∆ exp

−[(dx
ξx

)2

+
(
dy
ξy

)2
]α/2,

(7)

decaying faster than the interactions in equation (2) if
α > 1. The cluster RG (see the Appendix) generates large
energy scales in the parameter range α < α0 ' 1.2. It
turns out that α0 < 1 in the model with anisotropic
exchanges, and we therefore consider only the regime
α > α0 ' 1.2 in the isotropic model.

The gap distribution is shown in Figure 3 for decreas-
ing temperatures. It is visible that the RG produces gaps
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Fig. 4. Temperature dependence of the number of effective
moments, normalized to the number of initial moments xL2.
We have set ξx = ξy = 9, ∆ = 44.7 K, x = 0.01, α = 2.
We used square systems of dimensions L × L, with L = 50
(�), L = 100 (+), and L = 200 (�). For large system sizes,
Neff ∼ (T/∆)xL2.

of order of the temperature T unlike in the case of the
infinite randomness fixed point where the opposite occurs
(see Ref. [28] for the one-dimensional Heisenberg chain
with an infinite randomness, random singlet behavior; see
reference [21] for the infinite randomness behavior in the
two-dimensional Ising model in a transverse field). As in
the Ising model analysis, we calculate the susceptibility in
two ways: (i) we assume a paramagnetic behavior of the set
of effective moments; (ii) we incorporate the correlations
induced by exchanges ∆ ∼ T , in which case an antiferro-
magnetic behavior in the susceptibility is restored.

4.1 Infinite randomness calculation

We first consider all the exchanges J < T to be set to
zero: the set of effective spins is viewed as a paramagnet
with a susceptibility

χ =
1

TL2
〈〈
N(eff)∑
i=1

S
(eff)
i (S(eff)

i + 1)〉〉, (8)

where N (eff) the number of effective spins. We have dis-
carded a prefactor 1/3 in equation (8), not relevant to the
present calculation. The low temperature susceptibility is
therefore controlled by two quantities: (i) the density of
free spins neff = 〈〈N (eff)〉〉/(xL2); and (ii) the magnitude
of the effective spin.

The number of effective moments scales like Neff ∼
(T/∆)xL2, as it is visible in Figure 4. The squared effective
moment shows two regimes:

(i) High temperature regime: The high temperature aver-
age squared effective moment scales like 〈〈[Seff ]2〉〉 ∼
∆/T (see Fig. 5). The susceptibility per unit volume
is χ ∼ x/T .
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effective moment 〈〈[Seff ]2〉〉 with ξx = ξy = 9, ∆ = 44.7 K,
x = 0.01, α = 2. We used square systems of dimensions L×L,
with L = 50 (�), L = 100 (+), L = 200 (�). The solid line
is ∆/T . The insert shows the low temperature dependence of
(xL2)−1〈〈[Seff ]2〉〉.

(ii) Low temperature percolation regime: At low tempera-
ture, the squared effective moment scales like 〈〈S2〉〉 ∼
axL2, with a some constant (see the insert Fig. 5). The
susceptibility per unit volume is χ ∼ (ax2L2)/∆. In
this regime, a cluster has percolated through the finite
size system. Its magnetization results from summing
xL2 variables Szi = ±1/2, corresponding to the two
sublattices magnetizations. Therefore, 〈〈S〉〉 ∼

√
xL2,

and 〈〈S2〉〉 ∼ xL2.

The cross-over between these regimes occurs at the tem-
perature scale Tco = (∆/a)(xL2)−1, which decreases to
zero when the system size is increased. Therefore in the
thermodynamic limit, only the high temperature param-
agnetic behavior survives while in a finite size, a low tem-
perature tail is present in the susceptibility (see Fig. 6).
Now the situation changes when correlations between
spins coupled by exchanges of order T are included.

4.2 Finite randomness calculation

To schematically incorporate the correlations at energy
scales of order of the temperature, we consider as frozen
the spins connected by an exchange with a gap between
T/2 and T . This freezing results in a staggered magnetiza-
tion because the set of effective moments is unfrustrated
(see the Appendix). The resulting susceptibility is shown
in Figure 7. It is visible that χT is linear in T at small T ,
with therefore a finite susceptibility at zero temperature.
This shows qualitatively how an antiferromagnetic behav-
ior can be restored because of the correlations at energy
scales ∆ ∼ T .
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5 Quantum anisotropic model

5.1 One-dimensional model

In one dimension, the RG equations of a model in which
only AF nearest neighbor exchanges are retained can be
solved exactly (see Ref. [14]). We note x = J/[Max(J)]
the exchange normalized to the maximal exchange. The
distribution of the variable x is P (x) = (f/Γ )xf/Γ−1,
with Γ = ln (∆/Max(J)), and f/Γ = xξ/(1 + Γxξ). The
weight on the strongest exchanges x ' 1 is ' xξ above
the cross-over temperature T ∗ = ∆ exp (−1/xξ), and de-
creases to zero at temperatures below T ∗, where the sys-
tem has crossed over to the random singlet fixed point. As



266 The European Physical Journal B

1e-05

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8

P(
   

  /
 T

 )
 ∆

 

    / T  ∆ 

Gap distribution, Anisotropic model

T=1.1
T=2.3
T=3.3
T=4.5
T=5.6
T=6.7

Fig. 8. Gap distribution of the anisotropic model, with ξx = 9,
ξy = 0.1 × ξx, and x = 0.01 and a system of size Lx × Ly,
with Lx = 640 and Ly = 64. The oscillatory behavior at high
temperature is due to the anisotropy in the couplings.

a test of our program, we considered the cluster RG of a
one-dimensional model, with the exchanges not restricted
to nearest neighbors (see Eqs. (1, 2)). For any practical
temperature above T ∗, the weight on energy scales of or-
der T is found to remain constant as the system is renor-
malized, with therefore the same behavior as in the one-
dimensional model with AF nearest neighbor exchanges
only.

5.2 Anisotropic model

We show in Figure 8 the evolution of the gap distribution
as the system is scaled down, with the parameters ξx = 9,
ξy = 0.1 × ξx, relevant to CuGeO3. As in the isotropic
model, energy scales of order T are generated upon renor-
malizing the system. To qualitatively include the effects of
correlations at energy scales ∆ ∼ T , we consider the spins
connected by an exchange with a gap between T/2 and
T to be frozen, and obtain a low temperature power-law
Curie susceptibility, χ ∼ Tα, with α = −0.7 if x = 0.01
(see Fig. 9). The low temperature susceptibility diverges
slower than a Curie law, which is a behavior characteristic
of an antiferromagnet. We did not succeed to obtain α > 0
as it is the case in doped CuGeO3. Therefore, we cannot
rigorously conclude on whether antiferromagnetism is long
ranged or associated to a zero temperature transition. A
precise discussion of this point is an open question, and
would require the correlations at energy ∆ ∼ T to be in-
corporated beyond our present treatment. For instance the
cluster RG could be used to renormalize the high energy
physics and the low energy effective Hamiltonian could be
treated by exact diagonalizations.

6 Conclusions

We have shown that the physics of the quantum Hamil-
tonian equations (1, 2) was already present at the level of
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Fig. 9. Temperature dependence of the Curie constant χT/x
of the anisotropic model, with ξx = 9, ξy = 0.1 × ξx, and
x = 0.01. The lattice sizes are 320 × 32 and 480 × 48. The
solid line is a fit of the low temperature behavior to the form
χT = 0.14 × T 0.3.

the classical Ising model. A Bethe-Peierls treatment of the
classical model has been given in which a transition at a
temperature∝ xξ∆ was found. The quantum Hamiltonian
has been treated in a cluster RG. The model was shown
to have a finite randomness behavior. We have shown at a
qualitative level how a low temperature antiferromagnetic
susceptibility can be obtained.

Two questions are left open:

(i) The Bethe-Peierls solution orders at a temperature
∝ xξ∆. We do not know whether the two-dimensional
model has also a thermodynamic transition at a tem-
perature ∝ xξ∆, or whether this temperature scale
corresponds to a cross-over to a Griffith physics. Both
behaviors would be a priori compatible with the ex-
istence of a maximum in the susceptibility of the an-
tiferromagnet at a temperature ∝ xξ∆.

(ii) The quantum model susceptibility shows an antifer-
romagnetic behavior at low temperature due to corre-
lations at energies ∆ ∼ T . The isotropic model shows
a finite susceptibility at low temperature while the
quasi one-dimensional has a susceptibility diverging
slower than a Curie law. A precise investigation of the
low temperature susceptibility would require a treat-
ment going beyond our present analysis, for instance
by treating the low energy effective Hamiltonian by
exact diagonalizations.

Two other proposals to explain antiferromagnetism
in doped in CuGeO3 have been made: Fukuyama,
Tanimoto and Saito [11] and Mostovoy, Khomskii, and
J. Knoester [29]. These proposals are quite different from
ours, and we have exposed previously why we think our
model is more relevant [15]. The inclusion of interchain
interaction in our model in reference [15] and the present
work, points strongly towards an compatibility with
experiments.
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the effective problem remains unfrustrated as the system is
scaled down. J. Souletie suggested the existence of a similar
physics in the classical and quantum models. The cluster RG
calculations have been performed on the CRAY T3E super-
computer of the Centre Grenoblois de Calcul Vectoriel of the
Commisariat à l’Energie Atomique.

Note added in proof

The author has obtained an evidence that the classical
model has a genuine thermodynamic transition, which will
be the subject of a future publication.

Appendix A: Renormalization equations

We use a cluster RG to renormalize the quantum Hamilto-
nian equations (1, 2). The method relies on a perturbative
expansion in the inverse of the largest exchange, and was
originally proposed by Dasgupta and Ma [30] in the con-
text of disordered Heisenberg chains. The cluster RG was
applied by Bhatt and Lee [31] to a model of phosphorus
doped silicon. Fisher used the method to solve exactly
the random singlet fixed point [28]. The cluster RG was
also used to investigate the low energy physics of disor-
dered spin chains: the dimerized Heisenberg chain with
random exchanges [32]; the spin-one chain with random
exchanges [33,34]; Heisenberg chains with random ferro-
magnetic and antiferromagnetic couplings [35]. Recently,
Motrunich et al. [21] shown the existence of an infinite
randomness fixed point in two dimensions in the Ising
model in a transverse field. At such a fixed point, inhomo-
geneities in the disorder grow indefinitely as the system is
scaled down, as in the random singlet fixed point in one
spatial dimension. We now give a short derivation of the
RG equations.

We isolate two spins S1 and S2 coupled by an ex-
change J1−2. This sets an energy scale given by the gap
between the ground state and the first excited multiplet:
if J1−2 > 0 is antiferromagnetic, the ground state has a
spin S = |S1 − S2| and the first excited multiplet has
S = |S1−S2|+1, with a gap ∆1−2 = |J1−2|(|S1−S2|+1).
If J1−2 < 0 is ferromagnetic, the ground state has S =
S1 +S2 and the first excited multiplet has S = S1 +S2−1,
with a gap ∆1−2 = |J1−2|(S1 + S2). Among all possible
pairs of spins, we consider the one with the strongest gap
∆1−2. This energy scale is identified to the system tem-
perature. If S1 and S2 are coupled ferro (J1−2 < 0) ,
the two spins S1 and S2 are replaced by an effective spin
S = S1 + S2. If they are coupled antiferro, they are re-
placed by an effective spin S = |S1 − S2|. S1 = S2 with
an AF coupling J1−2 leads to singlet formation while a
residual moment is formed otherwise.

S3

S4

S
2

S
1

S3

S4

S3

S S
1 2

(a) (b)

S3

(c) (d)

|S - S|1 2

Fig. 10. The first RG transformations in a cluster expansion
with a residual spin formation (a) and (b), and a singlet for-
mation (c) and (d). The dashed lines represent renormalized
exchanges.

A.1 Residual moment formation

Let us first consider the case where a residual moment is
formed corresponding to (a) and (b) in Figure 10. We spe-
cialize a spin S3 among the other spins and denote by Ji−j
the exchange between spins i and j, with i, j = 1, ..., 3.
The coupling Hamiltonian between the spins S1 and S2 is
H1−2 = J1−2S1 · S2 while the remaining couplings

HI = J1−3S1 · S3 + J2−3S2 · S3 (9)

are treated in a first order perturbation. This leads to the
renormalized coupling Hamiltonian HI = J̃3S3 · S, with
the renormalized exchange

J̃3 = J1−3c(S1, S2, S) + J2−3c(S2, S1, S), (10)

with

c(S1, S2, S) =
S(S + 1) + S1(S1 + 1)− S2(S2 + 1)

2S(S + 1)

derived in reference [35]. The sublattice on which the resid-
ual spin is placed is determined as follows: if S1 > S2, the
residual spin S is placed on the same sublattice as S1 while
it is placed on the sublattice of S2 if S1 < S2.

A.2 Singlet formation

We now consider singlet formation, with S1 = S2

coupled AF. The renormalized couplings are obtained
in a second order perturbation theory. Generalizing
the calculation in references [31,35] to the coupling
Hamiltonian (9), we find the renormalized exchange

J̃3−4=J3−4+
2S1(S1 + 1)

3J1−2
(J1−3−J2−3)(J2−4−J1−4),

(11)

where S1 = S2 denote the spins at site 1 and 2. In the
1D limit J2−3 = J1−4 = 0 equation (11) reproduces the
result in reference [35], and the spin-1/2 limit S1 = 1/2
reproduces the result in reference [31].
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A.3 Absence of frustration

We show that frustration is not generated by the RG pro-
cedure. We assume an unfrustrated starting Hamiltonian,
and show that the different RG operations are compatible
with the sublattice structure. We distinguish three cases:

(i) S1 and S2 belong to different sublattices and are cou-
pled antiferro. We assume S1 > S2 and the effective
spin S = S1−S2 replaces the spin S1. The renormal-
ized coupling to another spin S3 in equation (10) is

J̃3 = J1−3 + (J1−3 − J2−3)
S2

S + 1
·

J1−3 > 0 and J2−3 < 0 leads to J̃3 > 0. J1−3 < 0
and J2−3 > 0 leads to J̃3 < 0. The renormalized
coupling J̃3 has thus a sign compatible with the sub-
lattice structure.

(ii) S1 and S2 belong to the same sublattices and are
coupled ferro. J1−3 and J2−3 have the same sign. We
have c(S1, S2, S) > 0 and c(S2, S1, S) > 0. The renor-
malized coupling J̃3 has the same sign as J1−3 and
J2−3, compatible with the sublattice structure.

(iii) S1 = S2 are coupled antiferro and a singlet is formed.
If S3 and S4 are coupled ferro and in the same sub-
lattice, J̃3−4 < 0 in equation (11). If S3 and S4

are coupled antiferro and in the opposite sublattice,
J̃3−4 > 0 in equation (11). The singlet formation is
thus compatible with the sublattice structure.
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